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Abstract. The concept of eigenfunction expansions for the wave equation is generalized to
open systems, in which waves escape to the outside. These non-conservative systems are
non-Hermitian in the usual sense. It is shown that the natural framework is an eigenfunction
expansion within a two-component formalism that treats the wavefunction and its conjugate
momentum together. Provided the system approaches spatial infinity rapidly ‘without tails’, and
possesses spatial discontinuities, the expansion in terms of the eigenfunctions (which are now
quasinormal modes) is shown to be valid.

1. Introduction

1.1. Closed and open systems

The usual concept of eigenfunction (or normal mode) expansions, central to many areas of
mathematical physics, is restricted to conservative systems in which the wave energy (or
other conserved quadratic expression, e.g. probability in the case of quantum mechanics)
is confined: if a string is clamped at both ends, the waves are reflected, without ‘leaking’
to the outside. Mathematically, the nodal (or in other systems the antinodal) boundary
conditions permit integration by parts without incurring surface terms, and thus ensure
hermiticity, which underpins the usual mathematical formalism. Eigenfunction expansions
for Hermitian systems are rooted in the Sturm–Liouville theory, of which this work is an
extension.

There are two senses of eigenfunction expansion. The first is the representation of an
arbitrary functionφ(x) (within a certain class) as the sum of the eigenfunctionsfn(x) of a
certain operatorH . The second sense is more important for physics: ifH is the generator
of time evolution, then the expansion of the initial data leads directly to a solution of the
dynamics, i.e.φ(x, t) for t > 0, by simply attaching phase factors e−iωnt to each term,
whereωn are the corresponding eigenfrequencies.

This paper develops eigenfunction expansions for the wave equation, in both of these
senses, foropen systems from which wave energy ‘leaks’ to the outside. Without the
nodal (or antinodal) conditions, hermiticity in the usual sense is lost. Nevertheless the
eigenfunction expansion can be recovered for a large class of such open systems. Many
models of this type are interesting and physically relevant. Open strings [1, 2] model
dissipative systems interacting with a bath. The formalism is also relevant to electromagnetic
waves that can escape from an optical cavity by output coupling [3], or gravitational waves
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escaping from a region with a nontrivial background curvature, such as the vicinity of a
black hole [4].

To set the stage, start with the usual conservative case. For simplicity, consider an
interval I in one dimension, and scalar functionsφ defined onI and vanishing at both
ends of the interval. It is straightforward to generalize to other boundary conditions,
e.g. dφ/dx vanishing at both ends of the interval. Then, ifH is a Hermitian operator
bounded from below but unbounded from above, the family of eigenfunctions{fn} defined
by Hfn(x) = ωnfn(x) is complete and orthogonal, with the eigenvaluesωn being real.
Mathematically, completeness in the first sense means that any functionφ of this class can
be expanded, in the distribution sense, as

φ(x) =
∑
n

anfn(x) (1.1)

whereas orthogonality ensures that the representation is unique, and also allows the
coefficientsan to be found by projecting in the standard way. More importantly, a dynamical
system described by, for example,∂φ/∂t = −iHφ is then trivially solved fort > 0 by
attaching phase factors e−iωnt to (1.1) in which the coefficientsan are found by projecting
the initial data. We seek expansions in both of these senses for open systems.

These elementary ideas are easily generalized to the wave equation[
ρ(x)

∂2

∂t2
− ∂2

∂x2

]
φ(x, t) = 0 (1.2)

whereρ(x) > 0. The eigenfunctions and eigenvalues are defined by [∂2
x+ρ(x)ω2

n]fn(x) = 0.
This wave equation could describe the transverse vibrations of a string of linear density
ρ(x) placed under unit tension [1, 2], or the scalar analogue of electromagnetism, with
ρ(x) ≡ n(x)2 and n(x) being the refractive index [3]. First, consider these equations
defined on a finite intervalI , with φ vanishing at both ends, so that the system is closed
and conservative. The operator−∂2/∂x2 is then Hermitian, positive definite and unbounded
from above. By the same arguments,{fn} is complete, and (1.1) holds. The eigenvalues
ω2
n are real and positive, so one only needs the positive frequencies 0< ω1 6 ω2 6 · · · but

not the corresponding setω−n = −ωn, and we emphasize this by writing (1.1) in this case
as

φ(x) =
∑
n>0

anfn(x). (1.3)

Inner products are defined by〈φ|ψ〉 = ∫
I

dx φ∗(x)ρ(x)ψ(x), under which the family{fn}
are mutually orthogonal.

We now wish to generalize these notions toopensystems defined by the wave equation
under suitable restrictions onρ(x) and on the class of functions to be represented. First,
let ρ(x) > 0, defined on [0,∞), satisfy two conditions: (a)ρ(x) has a step discontinuity
or stronger discontinuity (e.g. aδ-function) at somex = a; (b) ρ(x) = 1 (or another
constant value) forx > a. We refer to these as the discontinuity condition and the ‘no
tail’ condition respectively. The discontinuity marks the boundaries of the finite interval
I = [0, a], within which an eigenfunction expansion is sought. There are advantages in
considering a finite interval. Physically, the interval may describe a laser cavity, and it
is desirable to describe its electrodynamics without reference to the outside. There would
naturally be a step discontinuity in the dielectric constant,ρ(x), at the boundary of the
cavity; in addition, there could be a thin slab of high dielectric constant forming a partially
transmitting mirror, described by aδ-function in ρ(x). Relaxation of the discontinuity and
the ‘no tail’ condition will not be dealt with here.
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Secondly, restrict attention to differentiable functionsφ(x) satisfying (a)φ(x = 0) = 0,
and (b) the outgoing wavecondition forx > a. The escape of the waves to infinity
characterizes an open system. The outgoing wavecondition (rather than the nodal condition)
at x = a+ renders the operator−∂2/∂x2 non-Hermitian on the intervalI = [0, a], and
the familiar proofs of completeness and orthogonality break down. The theme of this
and the following paper [5] is to show that, under the conditions stated, completeness
and orthogonality can be recovered in a natural way. Most of the tools of mathematical-
physics constructed theorems (e.g. Rayleigh–Schrödinger perturbation theory) can likewise
be recovered. The half-line problem (x > 0) so defined is somewhat simpler to start with,
and corresponds to many realistic situations, e.g. an optical cavity with a totally reflecting
mirror at one end (x = 0), orx representing a radial variable. A generalization to a full-line
problem will be sketched later.

For such open systems, completeness refers to an expansion in terms of the
eigenfunctions, but also with the outgoing wavecondition atx = a+. Thus, the eigenvalues
ωn are complex (with Imωn < 0 because the amplitude decays). The eigenfunctionsfn(x)

are therefore not normal modes (NMs), but quasinormal modes (QNMs).
Quite generally the QNM frequencies exist in pairs, related byω−n = −ω∗n, where by

convention 0< Reω1 6 Reω2 6 · · ·. The case where one (or more) QNM frequency falls
on the imaginary axis is readily dealt with. Butω2

−n 6= ω2
n, so the eigenfunctionsf−n(x)

andfn(x) are linearly independent. Thus, the eigenfunction expansion to be sought is (1.1)
rather than (1.3), i.e. we need the full set of eigenfunctions, not just those with Reω > 0.
Many models (e.g. see section 4) contain a parameter,ε, characterizing the amount of
leakage (e.g.ε = a/M for the model in section 4). The above discussion shows that there
is a fundamental difference between the NMs forε = 0 and the QNMs forε 6= 0—the
latter are double in number.

Under the conditions stated, the set of all QNMs{fn} of such an open system is
complete in the intervalI , in the sense of (1.1) [6]. However, earlier results [6] are not
entirely satisfactory, for a number of reasons. (a) The family of QNMs{fn} is in fact over-
complete. (b) If an inner product is introduced on the intervalI , in the naive way, then the
family of QNMs {fn} are not mutually orthogonal. It is therefore difficult to project any
initial data and obtain the expansion coefficients, and therefore difficult to solve the dynamics
in a straightforward manner. (c) The doubling of the eigenfunctions upon the introduction
of a small amount of leakage appears perplexing. (d) The outgoing wavecondition for each
eigenfunction isfn(x) ∝ exp(iωnx), x > a, but is more difficult to specify for a general
function φ(x) which is to be expanded—except by saying that it is a linear superposition
of suchfn’s, which appears unsatisfactory.

1.2. Two-component expansion

In fact, all these difficulties are closely related to one another, and can all be avoided if the
right question is posed. This can best be appreciated by considering the dynamical problem,
and takingφ andρ(x)∂φ/∂t at t = 0:

φ(x, t = 0) =
∑
n

anfn(x) (1.4)

ρ(x)
∂φ

∂t
(x, t = 0) =

∑
n

an(−iωn)ρ(x)fn(x). (1.5)

Since φ(x) ≡ φ(x, t = 0) and φ̂(x) ≡ ρ(x)∂φ(x, t = 0)/∂t are arbitrary and can be
independently specified (except for one constraint to be discussed below; see (1.11)–(1.13)),
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we are led to consider thesimultaneousexpansion of apair of functions(φ, φ̂) (belonging
to a certain class,0, to be specified below)(

φ(x)

φ̂(x)

)
=
∑
n

an

(
1

−iωnρ(x)

)
fn(x) (1.6)

using the same coefficients,an, for both components. If this should be possible, then one
would also wish to find a projection formula for determining the coefficients,an, from the
given function pair(φ, φ̂). An important point of this paper is that (1.6), rather than (1.1),
is the right question to ask.

The inclusion of the factor ofρ(x) in (1.5) turns the second component into the conjugate
momentumφ̂ = δL/δ(∂tφ) = ρ∂tφ, where the Lagrangian of the system defined by (1.2)
is L = 1

2

∫
dx [ρ(x)(∂tφ)2− (∂xφ)2].

Since conservative systems represent a limiting case (e.g. by takingε → 0), we first
show that (1.6) reduces to (1.1) when the eigenvalues are real. In this case,ω−n = −ωn, and
up to an arbitrary constant phase factor which can be chosen to be unity,f−n(x) = fn(x).
Thus, upon grouping pairs of terms in (1.6),

φ(x) =
∑
n>0

(an + a−n)fn(x) ≡
∑
n>0

βnfn(x) (1.7)

φ̂(x) = ρ(x)
∑
n>0

−iωn(an − a−n)fn(x) ≡ ρ(x)
∑
n>0

γnfn(x). (1.8)

So in this case, the simultaneous expansion of two functions(φ, φ̂) using the full set of
NMs n = ±1,±2, . . . is equivalent to the separate expansion of each function,φ and φ̂/ρ,
independently (in the sense thatβn andγn are independent) using only the NMsn = 1, 2, . . .
in the right half of the frequency plane. Although the latter is the conventional view, the
former perspective, i.e. expansion in the sense (1.6), is the appropriate one for generalizing
to open systems. Dissipation destroys the symmetry undert → −t , ω → −ω, and hence
the two groups of eigenfunctions (Reω > 0 and Reω < 0) become mixed.

The expansion is meant to apply to the class,0, of function pairs(φ, φ̂) defined on
I = [0, a] with a node atx = 0 and the outgoing wavecondition atx = a+. Because
the system is characterized byρ(x) = 1 for x > a, this condition is∂φ/∂t = −∂φ/∂x at
x = a+. But sinceφ̂ representsρ∂φ/∂t , we define the class of pairs,0, to be those(φ, φ̂)
such thatφ and φ̂/ρ are differentiable, and satisfy (1.9)–(1.11):

φ(x = 0) = 0 (1.9)

φ̂(x = 0) = 0 (1.10)

φ̂(x = a+) = −φ′(x = a+) (1.11)

where ′ = d/dx. Becauseφ̂ is not continuous acrossx = a and φ′ may also be
discontinuous, we need to specify the point of evaluation asa+ in (1.11). Ifρ(x) contains a
δ-function, then d2φ/dx2 would also contain aδ-function, so in general one only requires the
existence of one-sided derivatives. Besides, we have already used the fact thatρ(a+) = 1.
Here we see another reason for dealing with a pair of functions—the outgoing wavecondition
cannot be defined in terms of a single function.

Completeness, in the sense of usingall the QNMs to expand asingle function in the
sense of (1.1) has previously been demonstrated [6], and indeed some special cases have
been known earlier [7]. However, because this earlier perspective is unsatisfactory, we
choose to make this paper self-contained. The rest of this paper is organized as follows.
In section 2 the proof of completeness is sketched and the two-component formalism is
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developed. Section 3 compares several possible expansion methods showing that the two-
component formalism is the most natural and effective. Numerical examples are given in
section 4. In order to focus on the main issues, the main parts of the paper discuss only
the simplest possible case (a one-dimensional system defined on a half-line, with one nodal
condition atx = 0 and one discontinuity atx = a, and withρ(x) − 1 being strictly zero
outside the discontinuity). The possibility of relaxing some of these conditions (e.g. a full-
line problem, multiple discontinuities) is examined in section 5. Concluding remarks are
given in section 6. The following paper [5] further develops the associated linear space
structure, to prove the uniqueness of the expansion and for application to time-independent
perturbation theory.

2. Completeness

2.1. Green’s function

Since the eigenfunction expansion is intimately related to the dynamics, we consider the
causal Green’s function, defined by [ρ(x)∂2

t − ∂2
x ]G(x, y; t) = δ(t)δ(x − y), together with

the initial conditionG(x, y; t) = 0 for t 6 0. Our starting point is the result [6] that under
the discontinuity and ‘no tail’ conditions stated in section 1,G can be represented in terms
of the eigenfunctionsfn as

G(x, y; t) = i

2

∑
n

1

ωn
fn(x)fn(y)e

−iωnt (2.1)

for x, y ∈ I , t > 0. Specifically, this holds even forx, y = a, provided thatt > 0. In (2.1),
the normalization convention is〈fn|fn〉 = 2ωn, where the generalized norm is defined by

〈fn|fn〉 = 2ωn

∫ R

0
dx ρ(x)fn(x)

2+ ifn(R)
2 (2.2)

evaluated for anyR > a. This differs by a factor of 2ωn from the expression introduced
previously [6], and is more convenient. Several remarks about this generalized norm are
in order. (a) It involvesf 2 rather than|f |2, and is therefore in general complex. (b) It
involves a surface term. (c) Each of the two terms on the right-hand side of (2.2) depends on
R, but the sum is independent ofR providedR > a. (d) The eigenvalue appears explicitly,
so it is not immediately apparent how to generalize it to the norm of an arbitrary function
〈φ|φ〉, or to an inner product〈φ|ψ〉. This problem will be addressed in the next paper [5]
and its solution again relates to the two-component formalism.

Given this representation ofG, and the initial conditionsG(x, y; t = 0) = 0,
ρ(x)∂tG(x, y; t = 0) = δ(x − y), we immediately obtain (subject to the validity of term-
by-term differentiation and the limitt → 0, to be discussed below)

i

2

∑
n

1

ωn
fn(x)fn(y) = 0 (2.3)

1
2ρ(x)

∑
n

fn(x)fn(y) = δ(x − y). (2.4)

Both (2.3) and (2.4) hold only forx, y ∈ I .
At first sight it may seem that (2.4), through the resolution of the identity, leads to an

expansion of any functionφ in terms of the QNMsfn. But this naive expansion (which
coincides with method C in section 3), is neither natural nor the most rapidly convergent.
Instead, in section 2.2, we shall introduce the natural expansion starting from (2.1) itself.
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However, before presenting this development, it is useful to at least provide some
heuristic arguments for the necessity of the discontinuity and ‘no tail’ conditions, and also
sketch the main elements of the derivation leading to (2.1) [6].

First, a representation in terms of a discrete basis can, at best, work over a finite spatial
interval; without a discontinuity, there would be no natural marking of doundaries of such an
interval. Secondly, consider the dynamical expansion for all times, especially large values
of t . If ρ(x) has a tail, then waves from a source pointy can propagate to a distant point
x ′, be scattered by the tailρ(x ′)− 1, and return to the observation pointx � x ′. Sincex ′

can be arbitrarily large, this signal would arrive at an arbitrarily late timet ≈ 2x ′ with an
amplitude∝ ρ(x ′)− 1≈ ρ(t/2)− 1. If ρ(x) has a significant tail, such a wave cannot be
represented as the discrete sum of QNMs, each of which decays as an exponential.

The main elements of the derivation leading to (2.1) are as follows [6]. The Fourier
transform ofG can be expressed as

G̃(x, y;ω) = f (ω, x)g(ω, y)

W(ω)
(2.5)

for x < y, wheref andg are homogeneous solutions at frequencyω, with f satisfying the
left boundary condition (i.e.f = 0 at x = 0) andg satisfying the right boundary condition
(i.e the outgoing wavecondition forx > a); W(ω) is their Wronskian. Iff and g are
proportional (in other words at a zero ofW ) a QNM satisfies both boundary conditions.

Consider the inverse Fourier transform to obtainG from (2.5); the original integration
is along the real axis in theω-plane. If we distort the contour to a large semicircle in the
lower half-plane, this then identifies three contributions toG.

First, the contribution from the large semicircle vanishes for allt > 0 if ρ(x) has a
discontinuity. Without the discontinuity condition, there would be a ‘prompt’ contribution
limited to a finite time. In ray optics language, the ‘prompt’ contribution contains signals
that travel directly from the source to the observation point without being reflected byρ(x)

[8].
Secondly, there could be singularities inf (ω, x) andg(ω, x). However, providedρ(x)

has ‘no tail’, the boundary conditions can be imposed respectively atx = 0 andx = a+;
as a result, atx, f andg are obtained by integrating the defining equations through a finite
distance inx, which cannot generate any singularities inω [9]. However, ifρ(x) has a tail,
g(ω, x) has a cut along the negative Imω-axis, extending to the origin. This then leads to
late time signals [8].

Under the discontinuity and ‘no tail’ conditions, both the prompt and the late time
contributions vanish, leaving only the residues at the zeros ofW . Thus, one obtains an
expression forG in terms of QNMs, and some arithmetic [6] then leads to (2.1), where
fn(x) ≡ f (ωn, x). The norm (2.1) emerges naturally from the factor of∂W/∂ω that appears
in evaluating the residue.

For systems violating these conditions, say blackholes, the Green’s function generally
consists of contributions from QNMs, the prompt and the late time tail [8]. However,
the expansion (2.1) will still hold within certain finite spacetime domain provided that the
signals of the prompt and the tail vanish (or become insignificant) in that domain [10].

2.2. Two-component formalism

The main aim of this paper is to obtain an eigenfunction expansion from (2.1). Given
functionsφ(x), φ̂(x) defined on [0, a] and belonging to0, i.e. satisfying (1.9)–(1.11), we
wish to demonstrate the completeness sum (1.6). For this purpose, it is convenient to
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consider an initial value problem. We first extendφ(x) to [0,∞); the extension can be
arbitrary except thatφ(x) is differentiable andφ(x)→ 0 rapidly asx →∞ (or has finite
support). We also extend̂φ(x) by

φ̂(x) = −φ′(x) x > a. (2.6)

This condition is compatible with continuity because(φ, φ̂) ∈ 0. These extensions are
purely mathematical and need not coincide with the actual wavefunction outside the interval.
Moreover, the derivation below goes through even without requiringφ(x) to vanish as
x →∞.

Then consider the initial value problem of findingφ(x, t) satisfying (a) the differential
equation (1.2); (b) the boundary conditionsφ(x = 0, t) = 0 andφ(x, t) being an outgoing
wave asx →∞; and (c) the initial conditions that

φ(x, t = 0) = φ(x) (2.7)

ρ(x)
∂φ

∂t
(x, t = 0) = φ̂(x) (2.8)

for all x. Quite generally, the solution to this problem is

φ(x, t) =
∫ ∞

0
dy [G(x, y; t)φ̂(y)+ ∂tG(x, y; t)ρ(y)φ(y)]. (2.9)

Split the integral into the inside part(0, a+) and the outside part(a+,∞). For the former,
we use the representation of the Green’s function (2.1) to obtain

∑
n an(in)fn(x)e

−iωnt ,
where the ‘inside’ contribution to the coefficient is

an(in) = i

2ωn

∫ a+

0
dy [fn(y)φ̂(y)+ f̂n(y)φ(y)] (2.10)

in which we have introducedf̂n(y) = −iωnρ(y)fn(y) to form the pair(fn, f̂n). This
definition is consistent with viewing the second component as the initial conjugate
momentum, and also with the notion that an eigenfunction corresponds to a single term
in expansion (1.6).

With the outgoing wavecondition, the arbitrary initial data assumed for the ‘outside’
should not propagate into the ‘inside’, and reference to it should disappear, apart from
possible dependence on the wavefunction at the interfacex = a+. To see this, we note that
the outgoing condition onG and the propertyρ(x) = 1 for x > a give ∂tG = −∂yG, and
together with (2.6), the ‘outside’ part of the integral in (2.9) becomes

−
∫ ∞
a

dy [G(x, y; t)∂yφ(y)+ ∂yG(x, y; t)φ(y)] = G(x, a; t)φ(a). (2.11)

Using representation (2.1) at the pointy = a, we obtain
∑

n an(out)fn(x)e−iωnt , where

an(out) = i

2ωn
fn(a)φ(a). (2.12)

Thus, forx ∈ I , t > 0, the initial value problem is solved by the discrete series

φ(x, t) =
∑
n

anfn(x)e
−iωnt (2.13)

and consequently

∂φ

∂t
(x, t) =

∑
n

an(−iωn)fn(x)e
−iωnt (2.14)
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wherean is given by the projection

an = i

2ωn

{∫ a+

0
dy [fn(y)φ̂(y)+ f̂n(y)φ(y)] + fn(a)φ(a)

}
. (2.15)

These coefficients do not depend on the arbitrary extension of the initial data to the ‘outside’
region. The above then proves that by projecting the initial data using (2.15) will provide
the solution to the later (t > 0) dynamical development using the sums (2.13) and (2.14)—in
other words, completeness in the second sense.

The derivation shows two features. (a) The two-component structure arises from two
sets of initial data. (b) All the ‘outside’ initial data can be collapsed to the pointx = a,
which is the physical origin of the surface term.

2.3. The zero-time limit

Taking t → 0+ in (2.13) and (2.14) yields an eigenfunction expansion like the one in
(1.6), i.e. completeness in the first sense. This derivation, in particular the need to keep
t > 0 in the intermediate steps, shows that in general the right-hand side of (1.6) should be
understood as a regulated sum: attach factors e−iωnt , then taket → 0+ in the final result.
The next section, however, shows that for step discontinuities, there is in fact no need for
regularization, and we can simply differentiate term-by-term and sett = 0.

3. Comparison with other expansions

There are many different ways of expanding a wavefunctionφ(x), so it is necessary to spell
out the unique features and advantages of the method developed here. For this purpose, we
compare three different expansion schemes.

(A) The first is the scheme developed here in terms of the QNMsfn, using bothφ and
φ̂, and with the coefficientsan given by (2.15).

(B) If one were to abandon the second componentφ̂, the expansion will involve a set
of coefficients,bn, calculated from (2.15) without thêφ contribution. In other words, using
f̂n(y) = −iωnρ(y)fn(y), we have

bn = 1

2

∫ a+

0
dy ρ(y)fn(y)φ(y)+ i

2ωn
fn(a)φ(a). (3.1)

We can regard this as the natural expansion (i.e. method A) applied to the pair(φ, φ̂) =
(φ, 0), so the sum will certainly giveφ(x) correctly.

(C) The third method makes use of the resolution of the identity in (2.4), which leads
directly to an expansion with the coefficients

cn = 1
2

∫ a+

0
dy ρ(y)fn(y)φ(y). (3.2)

In other words the surface term in (3.1) is ignored. It may seem surprising that neither the
φ̂ contribution nor the surface term is necessary for representingφ(x); we shall, however,
show below that there are definite advantages when these are retained, as in method A.

We now wish to compare these methods of expansion, and in doing so explain the
advantages of the method developed here.

First and foremost, methods B and C will not solve the dynamical evolution fort > 0
by simply attaching phase factors e−iωnt , i.e. they do not provide a complete expansion in
the second sense. This is hardly surprising since there is no knowledge of the initial∂tφ.
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Methods A, B and C all provide explicit projection formulae for the coefficients,
respectively (2.15), (3.1) and (3.2). By a straightforward WKB analysis, it is easy to
demonstrate several properties of these coefficients for functionsφ with bounded derivatives
up to φ′′ and φ̂/ρ being differentiable. (i) For a system with a step discontinuity, these
coefficients behave asymptotically as|anfn(x)| ∼ n−3, |bnfn(x)| ∼ n−2, |cnfn(x)| ∼ n−1,
showing that method A is the most rapidly convergent and thus the most effective in practice.
(ii) The analogous sums forφ′(x) (or in the case of method A, alsôφ(x)) would involve
f ′n(x) (or f̂n(x)) rather thanfn(x), differing by a factor of−iωn (or −iρ(x)ωn) which is
asymptotically∝ n. Thus, the terms in the sum go as|anf ′n(x)| ∼ n−2, |bnf ′n(x)| ∼ n−1,
|cnf ′n(x)| ∼ n0. Method C fails completely forφ′(x). (iii) Whether method C converges for
φ(x) and whether method B converges forφ′(x) depends on the phase of the summands,
since their magnitudes go asn−1. Forx < a, the phases are oscillatory inn (in fact linearly
increasing withn, by an amount not equal to an integral multiple of 2π ), so the sum is
conditionally convergent. But forx = a, the phase is asymptotically constant, so these
sums are logarithmically divergent. These properties are illustrated numerically in the next
section.

In other words, method C (the naive projection using (2.4)) is the least convergent.
Incorporation of the surface term (method B) improves it by one power; including the
second component (method A) improves it by one more power provided(φ, φ̂) ∈ 0. Thus,
quite apart from dynamical evolution, method A is the best. This is a principal improvement
over previous results [6].

The differences can be understood in another way. Suppose we start with method A.
Then method B can be obtained ifφ̂ is identically zero. But in order for the pair to be in
0, we would then have to forceφ′(a+) = 0, even thoughφ′(a−) 6= 0. The discontinuous
derivative naturally causes the rate of convergence to get worse. Next, method C, which
drops the surface term, can be regarded as method B applied to a functionφ(x) which
is forced to haveφ(a+) = 0 (to which the surface term is proportional), even though
φ(a−) 6= 0. The discontinuity in the function (compared with the discontinuity in the
derivative) uses another power.

Incidentally, the foregoing arguments also show that for method A, the rate of
convergence allows the series to be differentiated and the limitt → 0 taken term-by-term.

Moreover, method A leads to a unique expansion, as will be proved in the next paper [5].
On the other hand, because methods B and C are not constrained by the second component,
they are not unique. To see this explicitly, one may start from identity (2.3), and project
on any functionψ(y) to give

∑
n enfn(x) = 0, where

en = 1

ωn

∫ a

0
dy fn(y)ψ(y) (3.3)

and the series for methods B or C can be modified respectively according tobn→ bn + en
andcn→ cn+en, without changing the value of the sum. In particular, suppose the function
φ to be expanded is itself a QNM:φ(x) = fm(x). Then, as will be shown in the next paper,
we would havean = δnm, but this would not be the case forbn andcn.

The large number of degrees of freedom represented by the coefficientsen can be
understood in two ways. First, consider a system with negligible leakage (ε → 0), so that all
Im ωn ≈ 0, andω−n ≈ −ωn, f−n ≈ fn. Then from (3.3), we seee−n ≈ −en. Thus, in this
limit, only bn+b−n andcn+c−n are determined, notbn−b−n andcn−c−n. This is as expected
from (1.7) and (1.8). Secondly, for an open system, we note by comparison with (2.15) that
ψ(y) can be identified with(i/2)φ̂(y). In other words, methods B and C are not unique
because we can add anyφ̂, which is unspecified when one considers only the first component.
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Figure 1. A schematic representation of the pole positions in
the complexω-plane for the model system (4.1). Hereε = 0.5
(circles) andε = 0 (crosses).

All these remarks show that method A, based on the two-component formalism, is the
best expansion method.

4. Examples

This section presents some simple examples [6] to put the discussion into context, and to
illustrate the eigenfunction expansions. For the first model system, letρ(x) = 1+Mδ(x−a),
x > 0, which can be thought of as a string of unit linear density on which a mass,M, is
attached to mark off a finite interval [1, 2]; in the optical analogue [3], theδ-function at
x = a represents a thin slab of high dielectric constant which forms a partially transmitting
mirror defining one end of an optical cavity, with a totally reflecting mirror at the other
endx = 0. In the case of the Schrödinger equation, whereρ(x) plays the role of potential
energy function, theδ-function also mimics the effect of a very thin potential barrier [11].
This model is interesting becauseε ≡ a/M controls the amount of leakage from the interval
I = [0, a], and the limitε → 0 renders the system conservative, withφ(x) forced to have
a node atx = a. The QNM frequencies are shown schematically by the circles in figure 1;
for small ε, they areωna ≈ nπ , n = ±1,±2, . . ., together with a pair of ‘zero modes’ at
ωa ≈ ±ε1/2. As ε → 0, the first family turn into the NMs of the corresponding conservative
system, shown by the crosses in figure 1, while the ‘zero modes’ disappear.

The second and even simpler example is a one-dimensional dielectric rod of index
n0 > 1, i.e.ρ(x) = 1+ (n2

0 − 1)2(a − x), where2 is the unit step function. Exactly this
system has been discussed as a much simplified model of gravitational radiation from stellar
objects [7]. The QNMs are regularly spaced along a line parallel to the realω-axis. Because
Im ωn is constant and Reωn are regularly spaced, the eigenfunctions can be related directly
to a standard trigonometric series, and in this manner the completeness of the QNMs (in the
sense of representingone function rather than two) has been noticed [7], and the generality
beyond the specific example has been conjectured, though the connection with a spatial
discontinuity was not emphasized. This example is important in that any model in which
ρ(x) has a step discontinuity is asymptotically (i.e. forn→∞) very similar.

The numerical results below all refer to the dielectric rod model. Chooseφ(x) =
(x/a) sin(πα), φ̂(x) = −(γ /a)ρ(x) sin(παx/a), where α and γ are two arbitrary
parameters. We have evaluated the expansion coefficientsan by the projection formula
(2.15). The partial sums on the right-hand side of (1.6) are then calculated up to|n| 6 N ,
and the absolute values of the differences from the original functionsφ and φ̂ are then
denoted as11(N, x) and ρ(x)12(N, x) respectively. First, consider the caseγ = 1, for
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Figure 2. (a) 11(N, x) versusN for a = 1, α = 1.7, andγ = 1. From bottom to top,x = 0.2,
x = 0.4, x = 0.6, x = 1. (b) 12(N, x) versusN for a = 1, α = 1.7, andγ = 1. From bottom
to top,x = 0.2, x = 0.6, x = 0.8, x = 1.

which the function pair satisfies the outgoing wavecondition and hence belongs to0. We
choosea = 1 andα = 1.7, so that the pointx = a is not a node ofφ. Figure 2(a)
shows11(N, x) versusN , and figure 2(b) shows12(N, x) versusN , for various choices
of x ∈ I . Clearly the remaining error converges rapidly to zero, in the pointwise sense,
even atx = a, a feature already discussed in section 3.

Next suppose a different value ofγ is chosen; then the pair does not satisfy the outgoing
wavecondition. In this case (i) the partial sum forφ still converges pointwise to the correct
value, for all 06 x 6 a; (ii) the partial sum forφ̂/ρ still converges pointwise to the
correct value, for all 06 x < a; but (iii) the partial sum forφ̂/ρ doesnot converge to the
correct value atx = a. This agrees with the discussion in the last section, namely that for
(φ, φ̂) 6∈ 0, a crucial cancellation does not occur, and method A is no better than method
B.

We have also computed the coefficientsbn and cn corresponding to methods B and C
as described in section 3. (Since these do not depend onφ̂, the result is the same for any
choice ofγ .) Figure 3 shows the magnitudes of the summands versusn for the pointx = a;
the predicted behaviour is indeed verified. We have also verified that, despite the slower
rates of convergence, the sums in methods B and C still converge to the correctφ(x) (in
the case of method C excluding the pointx = a).

5. Generalization

In this section the possibility of relaxing some of the conditions will be sketched.

5.1. The full-line problem

The formalism is readily generalized to one-dimensional systems defined on an interval
I , but allowed to leak at both ends to±∞, so that one has to consider the full line
−∞ < x <∞. In this case, the auxiliary functiong(ω, x) in (2.5) is defined as before, and
we still definef (ω, x) as the solution satisfying the left boundary condition; but instead
of f (ω, x = 0) = 0, this is now given by the outgoing waveconditionf (ω, x) = e−iωx ,
x → −∞. The ‘no tail’ condition now consists of two parts. First, the condition thatρ
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Figure 3. Magnitudes of the summands in (3.3) versusn. From
bottom to top,|anfn(a)|, |bnfn(a)|, |cnfn(a)| wherea = 1.

has no tail asx → +∞ guarantees thatg is analytic inω. Secondly, the condition thatρ
should also have no tail asx →−∞ ensures thatf is analytic inω.

For the full-line problem, the system must havetwo discontinuities. (In fact there could
be more than two; see below.) If the discontinuities occur ata1 and a2, with a1 < a2,
then the expansion is valid inside the intervalI = [a1, a2]. The projection formula (2.15)
acquires two surface terms, respectively at the two end-pointsa1 anda2. All the derivation
is straightforward, and will not be recorded.

In fact, the half-line case can be considered to be a special case, with the origin regarded
as one of the discontinuities.

5.2. Multiple discontinuities

There could also be more than two discontinuities, saya1, a2, . . . , aN assumed to be in
ascending order. By matching the WKB approximations across each of these discontinuities,
it is readily shown that the integral along the large semicircle in theω-plane vanishes
providedx, y lie between the outermost discontinuities. The eigenfunction expansion then
holds in the intervalI = [a1, aN ].

6. Conclusion

In this paper we have presented a formalism of eigenfunction expansions for open systems.
For systems with discontinuities and ‘no tail’, the QNMs provide a complete basis for
functions satisfying the outgoing waveboundary condition. Completeness is to be understood
both in the usual mathematical sense of expanding a certain class of functions in terms of
eigenfunctions, and also in the physical sense of solving the dynamics by attaching phase
factors e−iωnt to each term in the sum.

The two-component formalism provides the expansion in both senses—it should be
obvious that any formulation that does not involve the initial∂tφ has no hope of solving the
dynamics. But even for time-independent problems, i.e. expansion in the first sense, the two-
component formalism is the most rapidly convergent and useful. The rate of convergence
is such that for step or stronger discontinuities the infinite sums for bothφ and φ̂ are valid
(including at the end-point) without the need for regularization. The advantage is confined
to function pairs∈ 0. This is not surprising, since the basis employed describes outgoing
waves.
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Projection (2.15) for the expansion coefficients suggests the introduction of an inner
product, and hopefully the notion of orthogonality of the eigenfunctions and the self-
adjointness of the time-evolution operator. These issues are addressed in the following
paper [5].
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